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A consequence of the zero-fourth-cumulant 
approximation in the decay of isotropic 

turbulence 

By YOSHIMITSU OGURA 
Department, of Meteorology, Massachusetts Institute of Tcchnology, 

Cambridge, Massachusetts 

(Kcccivetl 17 October 1962) 

This paper is a continuation of previous work (Ogura 1963a, 0 )  on the dyiiamical 
consequence of the hypothesis that fourth-order mean values of the fluctuating 
velocity components are related to second-order mean values as they would be 
for a normal joint-probability distribution. The equations derived by Tatsumi 
(1957) for isotropic turbulence on the basis of this hypothesis are integrated 
numerically for specific initial conditions. The initial values of the Reynolds 
number, Rh = (ZT): h/v, assigned in this investigation are 28.8, 14.4, 7.2 and 1.8, 
where (2); is the root-mean-square turbulent velocity, h the dissipation length 
and 1’ the kinematic viscosity coefficient. 

The result of such computatioiis is that the energy spectrum does develop 
negative values for R, = 28.8 and 14.4. This first occurs a t  a time approximately 
2.8 for R, = 28.8 and 4.3 for R, = 14.4. The time-scale here is (E,,K;)-~, where 
K,, is a wave-number scale typical of the energy-containing velocity component 
and E,, a typical value of the energy spectrum, is given by .In-;~;~r?. 

Them is no evidence of the energy distribution tending to become negative 
for R,l = 7.2 and 1.8. It is observed that inertial effects are relatively weak at 
RA = 7.3 and the decay process is largely controlled by viscous effects. For 
R, = 1.8, a purely viscous calculation is found to be adequate t o  account for the 
numerically integrated results. 

1. Introduction 
The present paper is a continuation of two earlier papers by the writer on some 

consequences of the zero-fourth-cumulant approximation in the theory of energy 
transfer in incompressible, isotropic turbulence. In  the first of these (Ogura 
1969 a) ,  the dynamical equations which describe the behaviour of isotropic tur- 
bulence in two dimensions were derived on the basis of an hypothesis of Million- 
shtchikov (1941 a, b ) .  This hypothesis assumes that the relationship among meail 
values of quadruple velocity-component products and those of double velocity- 
component products is the one appropriate to a jointly normal probability dis- 
tribution. The equations were then integrated iiumerically for specific initial 
conditions. The result revealed that the energy-spectrum function assumes 
negative values after a finite time. Truncation errors which arise from finite- 
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differeiice approximations in numerical integration were examined and it was 
concluded that the negative values of the spectrum function cannot possibly 
be generated by truncation errors. 

This study was extended in the second paper (Ogura 1962 b, hereafter referred 
to as paper A), in which the equations derived independently by Proudman & 
Reid (1954) and by Tatsumi (1957) for three-dimensional turbulence were inte- 
grated numerically, but only for an inviscid fluid. While the generation of nega- 
tive energy densities was again observed, it was not conclusively clear in this case 
whether or not this unphysical result was produced by the above hypothesis. 
This was because a larger error was induced in numerical calculations by trun- 
cating the infinite wave-number space at  a finite wave-number. 

The purpose of this paper is to present results of numerical integration of 
Tatsumi’s equations in a viscous case for a particular set of initial conditions. 
The large truncation error mentioned above is no longer present. The computa- 
tions are repeated for several different values of the Reynolds number, and nega- 
tive energy densities are observed for all but the two lowest Reynolds numbers. 

In  connexion with the above hypothesis, it  should be mentioned that 
Kraichnan (1962) has recently made a critical appraisal of the general cumnlant- 
discard approximation, of which the above hypothesis is a particular case. 
He showed analytically that this hypothesis leads to a negative-definite power 
spectrum when it is applied to the ‘convection’ of a scalar field by a prescribed 
random velocity field. This phenomenon has been also observed by O’Brien 
& Francis (1962) in their work on the numerical integration of the appropriate 
spectral equations for a scalar variable. 

2. The basic equations 
The basic equations which we deal with in this paper are the same as those 

in paper a. For convenience of discussions which follow, some of them are 
summarized briefly in this section. 

The dynamical equations derived by Tatsumi (1957) are written as 

(2.1) 

aY-’/at f l ’ (K2  +K’2 + K”’) y = $1(K,  K ’ ,  K ” )  E ( K ,  t )  E ( K ’ ,  t )  

+ $ z ( ~ ,  K ’ ,  K ” )  E(K’, t )  E(K”,  t )  

+ $h3(K, K ’ ,  K ” )  E(K”, t )  E(K, t ) ,  ( 2 . 2 )  

where E ( K ,  t)is the energy spectrum function, 1’ the kinematic viscosity eoe%cient, 
K the wave-number, t the time, 

$1 = ( q / 1 6 ~ 3 ~ ’ 3 ~ ” )  ( - 3 ~ 2 ~ ” 2  + 3 ~ 2 ~ ~ 2  - ~ ’ 4  - ~4 + ~ ’ 2 ” ’ 2 ) ,  

$h2 = ( q / 1 6 ~ ~ ’ 3 ~ ’ ’ 3 )  ( 3 ~ 2 ~ ” 2  - 2 ~ ’ ” ’ ’ 2  + ~ ’ ’ 4  + ~ ’ 4  - ~ ‘ 2 ~ 2 ) ,  

$3 = ( q / 1 6 / ~ 3 ~ ’ 3 ~ ” )  ( ~ 4  - &’2 - ~ ” 4  + ~ ’ 2 ” ’ 2 ) ,  

and (I is the symmetric quartic 

= 2K2K’2 + ZK””2 + 2K”2K2 - K4 - K14 - K”4* 
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The set (2.1) and (2.2) constitute the fundamental equations for the present 
study of turbulence. In  numerical integrations the infinite integration in (2.1) 
is necessarily truncated at a finite limit, K* say. 

For convenience of numerical analysis, dimensionless variables are introduced 
in the following form 

t = ~ ( h f )  

K = ~ ( A K ) ,  K’ = ~ ( A K ) ,  K” = ~ ( A K ) ,  K* = ~ ( A K )  (i,j, k = 0,1, 3,  ..., I ) ;  (2 .3)  

E = Eo#(k,T),  

where E,  and Yo are constants. At and AK denote the finite-difference incre- 
ments for time and wave-number, respectively. Equations (2.1) and (2.3) then 
take the following dimensionless finite-difference form 

1 (T  = 0, 1, 3, ...); 

‘lr = Y o $ ( k , j ,  i ,  T ) ,  

W j S I  

lk - i lCI  
$(r+:)(k, j ,  i ,  T )  d id j ,  (2.4) 

$“& = [ I -  (l/eR,) ( k 2 + j 2 + i 2 ) 1  [1+(1/2Re) ( k 2 + j ~ + i 2 ) ] - 1 $ ( ~ - ~ )  

+a2[l+ (1/2R,) ( k 2 + j 2 + i 2 ) ] - - 1 [ $ ,  &(7)(k) B 7 ) ( j )  

+ $2 &)(j) ,!37)(i) + $3B7)(i)B7)(~)1, (2.5) 

where a typical term like &) (k) represents a value of & at t = 7(At) and K = ~ ( A K ) ,  
and the dimensionless forms of $2 and $3 are obtained simply by replacing 
K ,  K’ and K” by k, j and i ,  respectively. The dimensionless parameters in (3.4) and 
(2.5) are 

R, = v-l(At)-l ( A K ) - ~ ,  = (At) ( A K ) ~ E ; ~ Y ~ ~ ,  c2 = (At) (AK)E~Y‘,’. (2.6) 

3. Results of numerical integrations 
Equations (2.1) and (3.3) will yield information about the time and wave- 

number behaviour of an energy spectrum function E ( K ,  t )  only when two initial 
conditions E(K, 0) and Y(K,  K ’ ,  K ” ,  0) are specified. It would evidently be useful 
to examine a wide range of initial conditions to explore the degree of dependence 
of the solution on the initial statistical distribution. We will, however, consider 
only the simplest situation, that in which initially the statistical distribution of 
third-order moments are zero and hence Y ( K ,  K ’ ,  K “ ,  0) is zero. One spectrum for 
which Y(K,  K‘, K ” ,  0) might be expected to be zero is the one typical of the final 
period of decay (Proudman & Reid 1954) when there is, in fact, negligible energy 
transfer. It should be emphasized that use of such a spectrum does not limit us to 
the final period, but merely provides us with a set of consistent and well-behaved 
initial conditions. 

With these ideas in mind the spectrum whose decay we have computed has 
the following description 

(3.1) 
3 - 2  
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FIGURE 1. Variations of energy spectrum with time for various values of the Reynolds 
number. (a )  RA(0) = 28.8 (R ,  = 8000); ( b )  R,(O) = 14.4 (Re  = 4000); (C) R,(O) ~ 7 . 2  
(R ,  = 2000); (d) RA(0) = 1.8 (Re = 500). 
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where Lo = K,/AK and K~ is a constant. Four different integrations of (2.1) and 
(2.2) have been completed, starting from the identical initial condition (3. l),  
for four different values of the Reynolds number, Re; Re = 500, 2000, 4000 and 
8000. The following values are assigned to the dimensionless parameters 

I’c, = 4, I = 32, c1 = 0.0166, g2 = 0.003538. (3.3) 

The initial condition (3.1) is the same as that in paper A, apart from a constant 
factor. The results of numerical calculations are presented in figures 1 (a)-(d) 
in which the dimensionless energy spectrum function ( E )  is plotted against the 
dimensionless wave-number (k) for various values of time. 

In  discussing these results, it  is found to be convenient to introduce the follow- 
ing dimensionless parameters. First, iiistead of Re in (2.6), we will use RA(0) 
which represents the initial value of the Reynolds number in terms of the initial 
condition (3.1) 

where h denotes the dissipation length and 2 is the mean-square turbulent 
velocity. The equation above is derived from the following two equations 

R,(o) = [(u”)’ A/L~I,=, = ( i  Jn)’ (Eo/K,)f /v ,  

and 

The values of Re assigned above are converted approximately to RA(0) = 1.8. 
7.2, 14.4 and 28.8, respectively. 

Next, instead of T in (2 .3 )  we introduce a new time-scale t ,  = (E,,q’i’)-$ and a 
new dimensionless time t’ = t/t,. From (3.2)) the relation between t’ and 7 is 
derived as t’ = 0.0614~.  It was noted in paper A that the mean-square vorticity 
would become infinite in an inviscid fluid after a time 7 = 46, which corresponds 
roughly to t‘ = 3.82 on the new time-scale. It is also notcd that this time may be 
compared with the time t’ = 0-5 required for the growth of the triple correlation 
from an initial value of zero (Proudman & Reid 1954). 

Figures 2 and 3 show respectively the variations of the mean-square vorticity 
(wz/lw:) and the mean-square velocity (u2/ug) as functions of time and the initial 
Reynolds number. Both quantities are represented as ratios with respect to 
their initial values. In  cases where only the viscous terms are retained in the 
dynamical equations, the variations of w2/lw: and u2/iUg with time are given by 

- __ -, -_ 

_ _  - _  

and 

respectively. The relationships represented by these equations are also included 
in figures 2 and 3 for reference. For RA(0) = 1.8, the viscous effects are found to 
predominate over the inertial effects so much that the two lines in thesc diagrams 
are almost indistinguishable. 
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FIGURE 2. The mean-square vorticity as a function of time for various values of the 
Reynolds number (solid lines). Arrows mark the times at which the energy distributions 
take on negative values. The broken lines represent purely viscous calculations. 

FIGURE 3. The same as figure 2, but for the mean-square turbulent velocity. 
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4. Discussion and conclusions 
The most striking feature we observe in figure 1 is that, for RA(0) = 38.8 

and 14-4, the energy distribution develops negative values after a finite time 
(see table 1). For Rh(0) = 00, it was found difficult in paper A to control the accu- 
racy of the numerical calculations due to the transfer of energy to large wave- 
numbers. As we observe in figures 1 (a )  and (b) ,  no appreciable amount of energy 
appears at the end of our finite wave-number domain in the present cases. This 
is due to the strong viscous effects operating at  large wave-number, indicating 
that the numerical error induced by truncating the infinite wave-number space 
at  a finite wave-number is absent in the present calculations. 

Rh(0) CO 28.8 14.4 

t' 2.08* 2.53 4-36 

* From paper A. 

TABLE 1. The time at  which the energy density first becomes negative for various 
values of the Reynolds number 

Figure 3 shows that, for R,(O) = 38.8, the mean-square vorticity decreases 
slightly at first due to viscous effects. It then increases, as the transfer function 
develops with time, reaching a maximum value of 1.38 Gat t' = 2-3. It thereafter 
decreases until the energy distribution takes on negative values at t' = 3-82. 
For RA( 0) = 14.4, however, the mean-square vorticity is monotonically decreasing 
and negative values of the energy density do not appear until t' = 4.36, at which 
time w2has decreased to about 0-3 w T  For RA(0) = 7.2, there is no evidence of the 
energy distribution tending to become negative even after a time t' = 3-7. 
However, at this low Reynolds number the decay of vorticity and energy are 
largely controlled by viscous effects. This is particularly true for RA(0) = 1.8 
where the numerically integrated results are found to agree almost completely 
with purely viscous calculations. 

Thus, from the work mentioned in § 1 and also from the present investigation, 
it is now conclusively clear that the transfer theory based upon the zero-fourth- 
cumulant approximation does lead to negative energy densities at  large Reynolds 
numbers. 
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